Email updates

Keep up to date with the latest news and content from Molecular Pain and BioMed Central.

Open Access Open Badges Research

Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala

Georgina Medina, Guangchen Ji, Stéphanie Grégoire and Volker Neugebauer*

Author Affiliations

Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 Univ. Blvd. RT1069, Galveston, TX 77555-1069, USA

For all author emails, please log on.

Molecular Pain 2014, 10:32  doi:10.1186/1744-8069-10-32

Published: 29 May 2014


Recently discovered neuropeptide S (NPS) has anxiolytic and pain-inhibiting effects in rodents. We showed previously that NPS increases synaptic inhibition of amygdala output to inhibit pain behaviors. The amygdala plays a key role in emotional-affective aspects of pain. Of clinical significance is that NPS can be applied nasally to exert anxiolytic effects in rodents. This study tested the novel hypothesis that nasal application of NPS can inhibit pain-related behaviors in an arthritis model through NPS receptors (NPSR) in the amygdala. Behaviors and electrophysiological activity of amygdala neurons were measured in adult male Sprague Dawley rats. Nasal application of NPS, but not saline, inhibited audible and ultrasonic vocalizations and had anxiolytic-like effects in the elevated plus-maze test in arthritic rats (kaolin/carrageenan knee joint arthritis model) but had no effect in normal rats. Stereotaxic application of a selective non-peptide NPSR antagonist (SHA68) into the amygdala by microdialysis reversed the inhibitory effects of NPS. NPS had no effect on hindlimb withdrawal thresholds. We showed previously that intra-amygdala application of an NPSR antagonist alone had no effect. Nasal application of NPS or stereotaxic application of NPS into the amygdala by microdialysis inhibited background and evoked activity of amygdala neurons in arthritic, but not normal, anesthetized rats. The inhibitory effect was blocked by a selective NPSR antagonist ([D-Cys(tBu)5]NPS). In conclusion, nasal application of NPS can inhibit emotional-affective, but not sensory, pain-related behaviors through an action in the amygdala. The beneficial effects of non-invasive NPS application may suggest translational potential.

Pain; Amygdala; Neuropeptide S; Emotion; Anxiety; Brain; Sensitization