Email updates

Keep up to date with the latest news and content from Molecular Pain and BioMed Central.

Open Access Highly Accessed Research

Positive allosteric modulation of TRPV1 as a novel analgesic mechanism

Evan E Lebovitz1, Jason M Keller1, Hal Kominsky1, Krisztian Kaszas1, Dragan Maric2 and Michael J Iadarola1*

Author Affiliations

1 Neurobiology and Pain Therapeutics Section, Laboratory Of Sensory Biology, NIDCR, NIH, Bldg 49 Rm 1C2049 Convent Dr, Bethesda, MD, 20892, USA

2 Laboratory of Neurophysiology, NINDS, NIH, Bethesda, MD, 20892, USA

For all author emails, please log on.

Molecular Pain 2012, 8:70  doi:10.1186/1744-8069-8-70

Published: 21 September 2012

Abstract

Background

The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment.

Results

Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing nerve terminals. The loss of nerve endings was manifested by an increase in levels of axotomy markers assessed by qRT-PCR and colocalization of ATF3 in TRPV1+ cells visualized via immunohistochemistry.

Conclusions

The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.

Keywords:
TRPV1; Pain; Capsaicin; Vanilloid; Nociception; Resiniferatoxin; ATF3; Dorsal root ganglion; MRS1477; Adelta fiber